Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals.

نویسندگان

  • N Benaroudj
  • D H Lee
  • A L Goldberg
چکیده

The disaccharide trehalose, which accumulates dramatically during heat shock and stationary phase in many organisms, enhances thermotolerance and reduces aggregation of denatured proteins. Here we report a new role for trehalose in protecting cells against oxygen radicals. Exposure of Saccharomyces cerevisiae to a mild heat shock (38 degrees C) or to a proteasome inhibitor (MG132) induced trehalose accumulation and markedly increased the viability of the cells upon exposure to a free radical-generating system (H(2)O(2)/iron). When cells were returned to normal growth temperature (28 degrees C) or MG132 was removed from the medium, the trehalose content and resistance to oxygen radicals decreased rapidly. Furthermore, a mutant unable to synthesize trehalose was much more sensitive to killing by oxygen radicals than wild-type cells. Providing trehalose exogenously enhanced the resistance of mutant cells to H(2)O(2). Exposure of cells to H(2)O(2) caused oxidative damage to amino acids in cellular proteins, and trehalose accumulation was found to reduce such damage. After even brief exposure to H(2)O(2), the trehalose-deficient mutant exhibited a much higher content of oxidatively damaged proteins than wild-type cells. Trehalose accumulation decreased the initial appearance of damaged proteins, presumably by acting as a free radical scavenger. Therefore, trehalose accumulation in stressed cells plays a major role in protecting cellular constituents from oxidative damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Trahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells

Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...

متن کامل

Trahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells

Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...

متن کامل

Reactive Oxygen Species and Antioxidant in Seminal Plasma and Their Impact on Male Fertility

Spermatozoa generate reactive oxygen species (ROS) in physiological amounts which play a role in sperm functions during sperm capacitation acrosome reaction (AR) and oocyte fusion. In addition damaged sperm are likely to be the source of ROS. The most important ROS produced by human sperm are hydrogen peroxide superoxide anion and hydroxyl radicals. Besides human seminal plasma and sperm posses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 26  شماره 

صفحات  -

تاریخ انتشار 2001